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Abstract. The properties of the high-temperature phase of Yang–Mills theory in Landau gauge are inves-
tigated by extending an earlier study on the infinite-temperature limit to finite temperatures. To this end
the Dyson–Schwinger equations for the propagators of the gluon and the Faddeev–Popov ghost are solved
analytically in the infrared and numerically at non-vanishing momenta. Gluons, polarized transversely with
respect to the heat bath are found to comply with the Gribov–Zwanziger and the Kugo–Ojima scenario,
while longitudinally polarized gluons are screened. Therefore the high-temperature phase is strongly in-
teracting. It is furthermore conjectured that Yang–Mills theory undergoes a first-order phase transition.
Indications are found that at high temperatures the thermodynamic properties are nearly those of an ideal
gas, although long-range interactions prevail.
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1 Introduction

Many properties of the high-temperature phase of QCD
and even of pure Yang–Mills theory are not yet under-
stood, especially the infrared behavior and thus the fate
of confinement. The equation of state, as found in lattice
calculations, exhibits an almost trivial Stefan–Boltzmann
behavior of the ideal gas [1]. This is also found in so-called
weak-coupling expansions [2]. On the other hand, it has al-
ready long ago been argued that the microscopic processes
cannot be purely perturbative [3]. This is exemplified by
the non-vanishing spatial string-tension [4]. In addition,
in the limit of infinite temperature, at least part of the
gluon spectrum shows confinement [5] in accordance with
the scenarios of Kugo and Ojima [6] and of Gribov and
Zwanziger [7,8]. Also at finite temperature indications of
such effects have been seen using various techniques [9–11].
This clearly demonstrates that non-perturbative quantum
effects persist in that limit.

The objective here is to understand the properties of
the gluons and Faddeev–Popov ghosts, in particular in
the infrared, in the high-temperature phase. This work is
therefore an extension of studies at infinite temperature
[5] and complements studies at temperatures below the
phase transition [12].

To accomplish this task, the Dyson–Schwinger equa-
tions (DSEs) [13] for the propagators of the gluon and the
Faddeev–Popov ghost are investigated. A clear separation
of soft and hard degrees of freedom is found. Indications
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will be discussed that this separation of scales is the rea-
son why a microscopically highly non-trivial and especially
non-perturbative theory can exhibit quite simple macro-
scopic properties as is the case for the equation of state.

This paper is organized as follows. In Sect. 2 Yang–
Mills theory and signals of confinement are briefly re-
viewed. The Dyson–Schwinger equations are introduced
in Sect. 3. An analytical treatment of the infrared sector is
given in Sect. 4. The consequences of the necessary trun-
cations and renormalization will be discussed in Sect. 5.
Numerical solutions beyond the infrared will be presented
in Sect. 6. This includes comments on the thermodynamic
potential and Schwinger functions. A discussion of the re-
sults and the phase structure are finally given in Sect. 7.
A summary and concluding remarks close the paper in
Sect. 8. Some technical issues are deferred to two appen-
dices.

2 Aspects of Yang–Mills theory

The following investigations are restricted to pure Yang–
Mills theory as substantial evidence exists that the non-
perturbative features of QCD are generated in the gauge
sector. Hence, the theory studied here is an equilibrium
Yang–Mills theory governed by the Euclidean Lagrangian1

1 The hermiticity assignment for the ghosts is different from
the conventional, although valid for Landau gauge [14].
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[14,15]

L =
1
4
F a

µνF a
µν + c̄a∂µDab

µ cb,

F a
µν = ∂µAa

ν − ∂νAa
µ − gfabcAb

µAc
ν ,

Dab
µ = δab∂µ + gfabcAc

µ .

Here F a
µν denotes the field strength tensor, Dab

µ the covari-
ant derivative, g the gauge coupling and fabc the structure
constant of the gauge group, which is SU(3) unless oth-
erwise noted. Aa

µ denotes the gluon field, and c̄a and ca

are the Faddeev–Popov ghost fields describing part of the
quantum fluctuations of the gluon field. We choose the
Landau gauge, which for technical reasons is best suited
for the purpose at hand [14].

The main focus of the present work is the fate of con-
finement at temperatures above the phase transition. It
is therefore necessary to be able to extract information
about confinement. Part of this information is encoded
in the pertinent 2-point functions. The corresponding sig-
nals will be only listed here. For a brief introduction to
confinement in covariant gauges see [16].

A sufficient criterion for the presence of confinement is
based on the fact that no Källén–Lehmann representation
of a particle exists if its spectral function is not positive
semi-definite. It is then not part of the physical spectrum
and thus confined [17]. This is the case if the corresponding
propagator D vanishes at zero momentum,

lim
p2→0

D(p2) = 0. (1)

This is essentially the behavior expected for the propaga-
tor of a confined gluon.

A second criterion stems from possible confinement
mechanisms. The Kugo–Ojima scenario [6] puts forward
the idea that all colored objects are BRST charged and
thus unphysical. One precondition for this mechanism is
an unbroken global color charge. In the Landau gauge this
condition can be cast into [18]

lim
p2→0

p2DG(p2) → ∞, (2)

where DG is the propagator of the Faddeev–Popov ghost.
This scenario necessarily also implies the condition (1) for
the gluon propagator.

In the Gribov–Zwanziger scenario [8], entropy argu-
ments are employed to show the dominance of field con-
figurations close or on the Gribov horizon in field config-
uration space. This scenario predicts again condition (2).
For an infrared constant ghost–gluon vertex, which is sup-
ported by lattice calculations [19] and semi-perturbative
calculations [20], condition (1) follows as well for the gluon
propagator [8].

Also intuitively it is clear that a strongly divergent
ghost propagator at zero momentum can mediate confine-
ment. Such an infrared divergence relates to long-ranged
spatial correlations. These are stronger than the ones in-
duced by a Coulomb force since the divergence in momen-
tum space is stronger than that of a massless particle.

An infrared vanishing gluon propagator is also intuitively
linked to confinement, as p2 = 0 puts a non-interacting
gluon on-shell. Thus the gluon does not propagate and is
confined.

3 Dyson–Schwinger equations

The DSEs [13,14] form an infinite tower of coupled non-
linear integral equations for the Green’s functions of a
given theory. Therefore, in general only a truncated set
can be solved in practical calculations. In the following
we aim at a closed set of equations for the pertinent 2-
point functions. In Landau gauge and at finite tempera-
ture these are the ghost propagator

DG(p) =
−G(p2

0,p
2)

p2 (3)

and the gluon propagator [15]

Dµν(p) = PTµν(p)
Z(p2

0,p
2)

p2 + PLµν(p)
H(p2

0,p
2)

p2 . (4)

where PT and PL are projectors transverse and longitu-
dinal with respect to the heat-bath. Equations (3) and
(4) define the dimensionless dressing functions G(p2

0,p
2),

Z(p2
0,p

2), and H(p2
0,p

2).
The derivation of the Dyson–Schwinger equations is a

straightforward, but tedious task. As in the previous inves-
tigations [5,12], we follow here [21] and keep only the equa-
tions for the propagators. Furthermore we neglect one-
particle-irreducible two-loop diagrams and assume a per-
turbative color structure. Furthermore, the ghost–gluon
vertex is taken to be bare, in accordance with recent in-
vestigations [19,20]. The construction of the various three-
gluon vertices will be discussed in Sect. 5.

The equations are obtained from the vacuum equations
(see e.g. [14]) by application of the Matsubara formalism
[15]. To obtain scalar equations for the (infinite) set of
Matsubara frequencies of the dressing functions Z and H
of the gluon propagator (4), the gluon equation is con-
tracted with the generalized projectors P ζ

Tµν and P ξ
Lµν ,

respectively, defined by2

P ζ
Tµν = ζPTµν + (ζ − 1) (δµν − δµ0δ0ν) , (5)

P ξ
Lµν = ξPLµν + (ξ − 1)

(
δµ0

p0pν

p2 + δ0ν
pµp0

p2

)
. (6)

The choice of the projectors was made so as to obtain a
well-defined 3-dimensional limit. The parameters ζ and ξ
allow one to vary the projection continuously in order to
investigate the amount of gauge symmetry violations. The
dependence on ξ vanishes in the infinite-temperature limit
[5].

2 These are chosen differently from the ones in [5] to avoid
an inconvenient kinematical singularity. In the limit of infinite
temperature, the resulting equations for the soft modes are the
same.



A. Maas et al.: The high-temperature phase of Landau-gauge Yang–Mills theory 95

Employing the projectors (5) and (6) yields the finite
temperature DSEs as

1
G(p)

= Z̃3

+
g2TCA

(2π)2

∞∑
n=−∞

∫
dθd |q|

(
AT(p, q)G(q)Z(p − q)

+AL(p, q)G(q)H(p − q)
)
, (7)

ξ

H(p)
= ξZ3L + THG + THH

+
g2TCA

(2π)2

∞∑
n=−∞

∫
dθd |q|

(
P (p, q)G(q)G(p + q)

+ NL(p, q)Z(q)Z(p + q)
+ N1(p, q)H(q)Z(p + q)
+ N2(p, q)H(p + q)Z(q)

+ NT (p, q)H(q)H(p + q)
)
, (8)

1
Z(p)

= Z3T + TGH + TGG

+
g2TCA

(2π)2

∞∑
n=−∞

∫
dθd |q|

(
R(p, q)G(q)G(p + q)

+ ML(p, q)H(q)H(p + q)
+ M1(p, q)H(q)Z(p + q)
+ M2(p, q)H(p + q)Z(q)

+ MT (p, q)Z(q)Z(p + q)
)

+
p2
0(ζ − 1)

2p2

(
Z3L − 1

H(p)

)
. (9)

Here δd
aCA = fdbcfabc = δd

aNc = δd
a3 is the adjoint

Casimir of the gauge group. The summation runs over
all Matsubara frequencies q0 = 2πTn. This (truncated)
set of DSEs is graphically displayed in Fig. 1.

The ζ and ξ dependence of the DSEs is acquired by
using (5) and (6). At ζ = ξ = 1 the original form of the
equations is recovered. For p0 = 0, (8) is only superficially
dependent on ξ. As all integral kernels are in this case
proportional to ξ, the dependence can be divided out for
ξ �= 0. Then, only the implicit dependence through in-
teractions with the hard modes remains. The latter effect
vanishes in the infinite-temperature limit and (8) becomes
the equation for the Higgs field of [5], independent of ξ.

The finite-temperature theory is renormalizable. Thus,
explicit wavefunction renormalization constants Z̃3, Z3L,
and Z3T have been introduced and will be discussed in
Sect. 5. Concerning the vertex renormalization, Z̃1 = 1
has been employed for the ghost–gluon vertex [22]. The
three-gluon vertex renormalization constant Z1 cannot be
calculated in the present truncation, but it is finite and set
to 1 [23,24]. The kernels AT, AL, R, MT, M1, M2, ML,
P , NT, N1, N2, and NL contain trivial factors such as the
integral measure. The integral kernels are quite lengthy,
and will not be displayed here. They can be found in [25].

The tadpoles T ij are used to cancel spurious diver-
gences in much the same way as in [5], see Sect. 5. How-
ever, also in the soft equations, they can possess finite
parts at finite temperature. In case of the longitudinal
equation, these can be absorbed into the mass renormal-
ization discussed below. In the transverse equation, these
are at ζ = 3 completely contained in the loop terms, and
their continuation away from ζ = 3 is thus arbitrary. Also
these contributions scale at best only as 1/p2 in the in-
frared and thus turn out to be irrelevant. Therefore, they
are dropped, especially as no simple prescription as the
one given later in (B.2) can remove the related spurious
divergences

Close inspection of the equations reveals further that
the dressing functions can only depend on |p0| and |p|.
The corresponding symmetry, under p0 → −p0, is used to
reduce the number of equations significantly.

Equations (7)–(9) depend on the coupling constant g
as the only parameter. In turn, g depends on the renor-
malization scale µ, which can be chosen arbitrarily at any
fixed temperature T . It directly enters into the defini-
tion of the infinite-temperature limit, as the effective 3-
dimensional coupling constant g3 depends on g [26]. In the
simplest case, g2

3 ∼ g2(µ)T . Comparing (7)–(9) to those
of the infinite-temperature limit [5], the constant of pro-
portionality has to be 1 in this truncation scheme in order
to obtain a smooth infinite-temperature limit. Hence, it
only remains to choose the temperature dependence of µ.
As discussed in Appendix A a ’t Hooft-like scaling [27]
with g2T fixed is employed to obtain a smooth infinite-
temperature limit.

4 Infrared properties

Asymptotic freedom turns out to be advantageous for the
infrared as well. Just at the phase transition, the n = 1
Matsubara frequency has already an effective “mass” p0 =
2πTc ≈ 1.7 GeV. By the Appelquist–Carazzone theorem
[28] the hard modes are suppressed by powers of |p|/p0 in
the infrared. Thus, hard modes do not contribute signifi-
cantly. Therefore, the infrared behavior of the soft modes
is the same as in the infinite-temperature limit and given
by power-laws,

G(p) = Agp
−2κ,

Z(p) = Azp
−2t,

H(p) = Ahp−2l.

The longitudinal function H behaves mass-like with l = 1.
The exponents of the ghost and transverse-gluon propa-
gators are related by [5,29]

κ = −1
2

(
t +

1
2

)
. (10)

As in the infinite-temperature limit, always two solutions
are found. One has κ = 1/2 while the other has a weakly
ζ-dependent value, being κ = 0.39760 at ζ = 1 [5,29]. The
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Fig. 1. The truncated Dyson–Schwinger equations at finite temperature. The dotted lines denote ghosts, the dashed lines
longitudinal gluons and the wiggly lines transverse gluons. Lines with a full dot represent self-consistent propagators and small
dots indicate bare vertices. The open circled vertices are full and must be constructed in a given truncation scheme. A bare
ghost–gluon vertex and slightly modified bare gluon vertices have been used here. Note that for soft modes the ghost-longitudinal
and the 3-point coupling of three longitudinal and of one longitudinal and two transverse gluons vanish

latter is the more likely solution, at least in the infinite-
temperature limit [5]. Hence the infrared exponents are
independent of temperature and therefore at least glu-
ons transverse with respect to the heat-bath are confined
above the phase transition. Studying each equation in de-
tail, it turns out that these quite general statements are
implemented very differently in each equation.

In case of the hard modes, there is no purely soft con-
tribution due to momentum conservation at the vertices.
Thus they decouple and a self-consistent solution is that
all hard-mode dressing functions are constant in the in-
frared.

In the case of the soft ghost equation (7), all contri-
butions become constant in the infrared. Thus they can
be canceled by the (renormalized) tree-level value. Only
the subleading behavior remains, as in the case of the 3-
dimensional and 4-dimensional theory [5,21]. As the sub-
leading contribution of the purely soft term dominates
the hard terms, the same behavior as in the infinite-
temperature limit emerges.

In case of the transverse equation (9), the hard-mode
contributions give rise to mass-like 1/p2 terms at best.
These terms are subleading compared to the soft ghost
loop. Thus the infrared is dominated by the latter and
the same infrared solution as in the infinite-temperature
limit is found.

Finally, the longitudinal equation (8) is quite different
from its equivalent in the 3-dimensional or 4-dimensional
case. In the prior case, it was dominated by its tree-level
mass, while in the latter it is identical to the transverse
one. In the present case, the absence of pure soft interac-
tions with ghosts, which could generate divergent contri-
butions as in the transverse equation, leads to dominance
of the hard modes3. These provide mass-like contributions

3 The pure soft interactions represented by the kernels N1

and N2 only generate a constant term in the infrared. With-
out a tree-level mass, the soft tadpoles generate a contribution
which can be removed by renormalization.

in the infrared. Inspecting e.g. P at ξ = 1,

P (0, q0, q,p) =
|q|2 q2

0 sin θ

|p|2 q2(q2
0 + (p + q)2)

, (11)

and using the fact that the hard dressing functions are
constant in the infrared, directly leads to a mass-like be-
havior due to the explicit 1/|p|2 factor and the finiteness
of the remaining expression. Thus, the 3-dimensional mass
of the Higgs sector is generated dynamically by the inter-
action with the hard modes.

In conclusion, the infrared exponents of all soft-mode
dressing functions do not depend on the temperature.
Only the infrared coefficients change.

These observations imply that, by using a finite num-
ber of Matsubara frequencies, it will not be possible to
obtain the infrared 4-dimensional vacuum solutions. This
would only be possible if the infrared limit of the high-
temperature and the low-temperature phase would have
been both encoded in the soft interactions alone or, as the
electric screening mass, would already be induced by a sin-
gle hard mode. However, any finite number of modes will
not be able to generate a divergence stronger than mass-
like in the longitudinal equation, equivalent to the soft
ghost contribution in the transverse equation. Hence, the
4-dimensional behavior can be established only by infinite
summation. In this case, the generated mass has to diverge
even after renormalization at p = 0 to obtain the vac-
uum solution, providing over-screening instead of screen-
ing. The possibility that the ghost–gluon vertex changes
due to temperature resulting in a coupling of soft ghost
modes to soft longitudinal gluons at low temperature but
not at high temperature is unlikely, since a bare ghost–
gluon vertex is already sufficient at low temperatures and
in the vacuum [12,21].
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5 Truncation

Concerning the truncation chosen, all arguments proven to
be successful in the vacuum and the infinite-temperature
limit [5,21,25] also apply here. This includes the require-
ment that, due to the Gribov condition, the dressing func-
tions G, Z, and H have to be positive semi-definite. Hence
the discussion here will only cover the additional aspects
due to finite temperature. The main additional trunca-
tion is to include only the finite set [−N + 1, N − 1] of
Matsubara frequencies.

For large but still finite T the 3-dimensional limit is to
be made explicit. Thus, all the problems encountered in
the 3-dimensional theory [5] persist, including the neces-
sity of a modified soft 3-gluon vertex. Hence, all modifi-
cations4 of the pure soft terms will be left as in the case
of [5], except for the tadpoles in the Higgs equation (8).
Due to the dynamically generated mass, it will be neces-
sary to alter this behavior. As no further information on
the interaction vertices involving hard modes is available,
the corresponding vertex functions will be assumed bare.
Due to the large mass of the hard modes, such a tree-level
ansatz should be justified.

The hard-mode contributions induce additional spuri-
ous divergences. As they contribute to the 2-point func-
tions mostly at mid-momenta, when viewed from the 4-
dimensional perspective using p2 = p2

0 +p2, it is expected
that in the chosen truncation, they are much harder to
compensate. This is indeed the case. The subtraction pre-
scriptions are listed in Appendix B. The technically quite
involved construction is described in detail in [25].

After removal of the spurious quadratic divergences,
the resulting equations are still logarithmically divergent
for N → ∞. The integrals themselves are convergent, but
the Matsubara sum is not, as the terms scale like 1/q0.
Hence the sum diverges for an infinite number of Matsub-
ara frequencies. This is the 4D logarithmic divergence and
thus the usual one of Yang–Mills theory [31], which has to
be renormalized appropriately. To this end, three regions
of momentum are to be distinguished.

At p ≤ 2πT , all terms in the Matsubara sums behave
essentially the same due to the Appelquist–Carazzone de-
coupling theorem. It is valid as the hard modes behave
essentially tree-level-like. As the contributions of the hard
modes behave as 1/q0, the final result will depend on the
number of Matsubara frequencies included. Thus, it is nec-
essary to renormalize in order to be independent of the
cutoff, which is in this case imposed by the number of
Matsubara frequencies included. The renormalization pro-
cedure will be implemented below. By this approach, the
results can be made quite reliable in this regime.

4 Recent investigations indicate that the three-gluon vertex
may have an infrared divergence [30]. As pointed out also in
[30], this does not affect the infrared regime, as this range is
dominated by the ghost loop. This is likely also the case at
finite temperature in the transverse equation. Due to the chro-
moelectric screening it is conceivable that this behavior does
not persist in the longitudinal equation at high temperatures.

At 2πT ≤ p ≤ 2πT (N − 1), more and more Matsubara
terms depart from their 1/q0 behavior to a 1/p behavior.
As the external momentum p becomes large compared to
the effective mass q0 of a hard mode, the mode becomes
dynamical and behaves like a massive 3-dimensional par-
ticle. The results are still quite reliable in this region, since
also for N → ∞, at any finite momentum p only a finite
number of Matsubara frequencies are dynamical. It be-
comes less and less reliable when approaching the upper
limit 2πT (N − 1).

At p ≥ 2πT (N − 1), the situation changes drastically.
Opposite to the case N = ∞, all Matsubara modes are
dynamical and their contributions will scale as 1/p. Thus
the number of Matsubara modes will now enter linearly
instead of logarithmically. This is an artifact of cutting
off the Matsubara sum. In this region the results are not
reliable. However, as the sum is still finite and suppressed
by 1/p, the contribution is subleading with respect to the
tree-level term and thus the system of equations can still
be closed consistently5.

By renormalization, these artifacts can be reduced, if
not completely removed at sufficiently small momenta. In
that sense the finite Matsubara sum approximation is a
small-(3-)momentum approximation. However, there are
a few subtleties involved concerning the renormalization
of a truncated Matsubara sum.

In the vacuum case [14,23], the DSEs can be renormal-
ized using a momentum subtraction scheme (MOM). This
approach fails if the large momentum asymptotic value of
the dressing functions is a constant different from 0. In
the case of a truncated Matsubara sum, the ultraviolet
behavior is that of a massive 3-dimensional theory. Thus
the self-energy contributions vanish as 1/p in the ultravi-
olet [5]. Therefore the dressing functions F = G, Z, H are
dominated by the tree-level term

lim
|p|→∞

F (p0, |p|) → 1
Z3

. (12)

Here Z3 is generically the wavefunction renormalization of
F . For a finite number of Matsubara frequencies Z3 is fi-
nite. Therefore the renormalization will here be performed
by explicit counter-terms. This is discussed below.

A second point is the mass and mass renormaliza-
tion necessary for the soft longitudinal mode. The soft
mode with frequency p0 = 0 of the A0 component of the
gauge field transforms homogeneously instead of inhomo-
geneously under gauge transformations. Therefore gauge
symmetry permits one to add a term

δm2A2
0(0,p) (13)

to the Lagrangian. In the vacuum such a term is forbid-
den by manifest Lorentz invariance. At finite temperature
in the Matsubara formalism, this is no longer the case,
and such a term could in principle be present. This term

5 A further argument is that otherwise the corresponding
finite 3-dimensional theory would be ill-defined which is not
the case.
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replaces the p2
0A

2
0 term of the hard modes, which stems

from the A0∂
2
0A0 term in the Lagrangian for p0 �= 0.

Concerning the counter-terms, the wavefunction renor-
malization is performed by adding the counter-term

δZ3(Aa
µ∂µ∂νAa

ν − Aa
µ∂2Aa

µ) (14)

to the Lagrangian. In the case p0 = 0, the first term is not
present for the longitudinal mode A0. Its place is taken
by (13). This implies a relation between the wavefunction
counter-term δZ3 and the mass counter-term δm2, which
cannot be exploited here due to the truncation of the Mat-
subara sum. Therefore an independent renormalization of
the wavefunction and the mass of the soft longitudinal
mode is necessary and will be performed.

A last point concerns the implications for the counter-
terms due to the truncation of the Matsubara sum. As the
divergence structure must be the same as in the vacuum,
the counter-terms must be the same for all frequencies.
This is no longer the case when the Matsubara sum is
truncated, as can be seen directly by counting. In the sum
for the soft mode, p0 = 0, contributions from 2N − 1
Matsubara modes are present for each loop. For the hard
mode with p0 = 2πT (N − 1), only N contributions are
present, as |p0 + q0| ≤ 2π(N−1)T . Thus different numbers
of modes contribute and the counter-terms cannot be the
same. This is always the case as long as N < ∞. To surpass
the problem in a constructive manner, each mode will be
renormalized independently.

Therefore, a counter-term Lagrangian is added, given
by

δL = δm2Aa
0(0)2

+
∑
q0

(
δZ3T(q0)Aa

µ(q0)∆Tµν(q0)Aa
ν(q0)

+ δZ3L(q0)Aa
µ(q0)∆Lµν(q0)Aa

ν(q0)

+ δZ̃3(q0)c̄a(q0)∂2ca(q0)
)
, (15)

where Aa
µ(q0) are the modes of the gluon field and c̄a(q0)

and ca(q0) are the modes of the ghost and anti-ghost field,
respectively. ∆T/Lµν are the appropriate tensor structures
of derivatives.

This shortcoming is a consequence of the truncation of
the Matsubara sum, yielding incorrect ultraviolet proper-
ties: For large momenta the system under consideration is
equivalent to a 3-dimensional theory of 2N − 1 particles
per 4D particle species. In such a theory all fields can be
renormalized independently. When the limit N → ∞ is
performed, the wavefunction renormalizations will again
coincide, as is shown6 for Z̃3 in Fig. 2. However, this pro-
cess is logarithmically slow.

In all equations but the one for H(0,p), using the
counter-terms of (15) amounts to replacing the tree-level
term 1 by 1 + δZ3 = Z3. In this way multiplicative

6 For gluons, the value of the wavefunction renormalization,
in the computationally accessible range of N -values, is dom-
inated by N -dependent effects at mid-momenta. Hence, the
logarithmic running is not easily discernible.

N
4 6 8 10 12 14 16 18 20

3Z~

1

1.05

1.1

1.15

1.2

1.25

n=0 mode

n=1 mode

n=2 mode

Fig. 2. Dependence of Z̃3 on the number of Matsubara fre-
quencies N for the three lowest frequencies. Shown are the
values for the κ = 1/2 solution at T = 1.5 GeV. The solution
for κ ≈ 0.4 is very similar, even on a quantitative level

renormalization is obtained explicitly. In the equation for
H(0,p), the tree-level term is replaced7 by 1 + δZ3L +
δm2/p2. Thus, it also generates a mass renormalization.

The last ingredient is the renormalization prescription,
which will be taken as

F (s) = 1, (16)

where s is the subtraction point. Here s = T is chosen; see
[25] for an alternative. This also ensures G(s)2Z(s) = 1 as
is required in the 4-dimensional theory [21].

In case of H(0,p2), two prescriptions are necessary.
The first is8

lim
|p|→0

|p|−2H(0,p2) =
1

m2
3D

=
1

r2g4T 2 + g2TCA
rg2T
4π

, (17)

where m3D is the tadpole-improved mass of the 3-
dimensional theory [5]. It depends on r = mh/g2

3 , which
is again taken to be the same value as in [5]. For fixed g3,
this mass is independent of temperature. In addition,

1
H(0, s)

= 1 +
m3D

s2 (18)

is required to fix the wavefunction renormalization.
It should be noted that, by renormalizing at T , it

is guaranteed that the correct 3-dimensional limit is ob-
tained. This prescription requires that at T → ∞ all dress-
ing functions approach 1 at infinity [5].

Therefore, the explicit implementation of the renor-
malization prescription for the DSE of a dressing function

7 Note that when using the projector (6), also δm2 is multi-
plied by ξ.

8 For numerical reasons, it is actually performed at 2δi,
where δi is the numerical IR cutoff of the integration. This
causes only a marginal difference.
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F with self-energy contributions I,

1
F (p)

= 1 + I(p), (19)

is then

1
F (p)

= 1 + δZ3 + I(p),

δZ3 = −I(s),

and in the case of H(0,p2)

1
H(0,p2)

= 1 + δZ3L +
δm2

p2 + I(p),

δm2 = m2
r − lim

p→0
p2I(p),

δZ3L = −I(s) +
limp→0 p2I(p)

s2 ,

where mr = m3D is the renormalized mass.
This renormalization prescription amounts in total to

a modified momentum subtraction scheme.

6 Numerical results

6.1 Propagators

Here the full system of (7)–(9) at all momenta will be
treated9. The numerical method employed is discussed in
[25,32].

For N = 12 independent Matsubara frequencies, the
result is shown in Fig. 3 for both sets of infrared exponents,
κ = 1/2 and κ = 0.39760. There are several observations.
First of all, in the infrared the soft modes are nearly unaf-
fected by the presence of the hard modes. The latter show
a significant modification, compared to tree level, although
still only of the order of 30%. The plateau reached in the
ultraviolet is an artifact of the truncation, yielding a fi-
nite wavefunction renormalization. The hard-mode dress-
ing functions exhibit some structure. There are maxima
in all dressing functions at mid-momenta. This is most
pronounced in the case of the dressing functions of the
longitudinal gluon. These structures do not translate into
a corresponding structure in the propagators, which are
monotonically decreasing from a constant of order 1/p2

0
in the infrared to 0 in the ultraviolet. For the hard-mode
dressing functions it is also nearly irrelevant to which of
the two soft infrared solution they belong.

In general, the hard modes deviate less from unity
with increasing n. The only exception seems to be the
ultraviolet behavior of the n = 1 gluon modes. This is,

9 A separate discussion of a further truncation, the ghost
loop only truncation, can be found in [25]. This truncation
includes only tree-level and loop diagrams with at least one
ghost-line. These results support that it is indeed the ghost
sector which drives the infrared behavior of Yang–Mills the-
ory, also at finite temperature, in accordance with the Gribov–
Zwanziger scenario.

however, an artifact of the truncation. If the Matsubara
sum would not be truncated, all dressing functions would
go to zero for sufficiently large momenta. On the other
hand, the finite value attained due to the truncation can
be influenced by the requirement to fit continuously to
the mid-momentum behavior. Hence, due to the peaks at
mid-momenta in the gluon dressing functions, the ultra-
violet plateau is increased for the n = 1 dressing func-
tions, leading to the level reordering. If the peaks would
be larger, this would also affect further modes. In the limit
of N → ∞, the peaks reach a finite maximum and there-
fore permit the plateaus all to go to zero, thus restoring
the correct behavior.

Figure 4 displays the dependence of the full solutions
on the number of Matsubara frequencies. While the soft-
mode dressing functions are nearly unaffected, apart from
the value of the renormalization constants, the effect on
the hard-mode dressing functions is significant. The ghost
is quite insensitive, except for its wavefunction renormal-
ization. This is not the case for the gluons. The peaks
at mid-momentum are sensitive to the number of Mat-
subara frequencies included. The effect is largest for the
longitudinal-gluon dressing functions. From the available
number of Matsubara frequencies, it is hard to estimate
whether the peak grows to a finite value for an infinite
number of Matsubara frequencies or not. It therefore can-
not be excluded that the hard longitudinal-gluon dressing
functions violate the Gribov condition, once sufficiently
many Matsubara frequencies are included. This would be
very similar to the case of the transverse-gluon dressing
function in the infinite-temperature limit [5] and there-
fore would necessitate a similar vertex construction for
the longitudinal-gluon–transverse-gluon vertex as for the
soft transverse-gluon vertex. If such a vertex would be
necessary, the result would be a finite peak, very similar
to the present situation. Thus, the results would be even
quantitatively quite similar.

The disappearance of the peaks in the gluon dress-
ing functions at N = 2 can be directly related to the
vanishing of hard-mode couplings due to the restriction
(p0 + q0)/(2πT ) < 2. Only hard–soft-mode couplings con-
tribute. Thus, the peak is generated solely due to pure
hard-hard interactions.

In general, the n > 1 modes essentially follow the be-
havior of the n = 1 mode, albeit much closer at tree level.

The dependence on temperature is shown in Fig. 5. The
infrared coefficients for the soft modes of the ghost and
transverse-gluon dressing functions are affected, while the
dressing function of the longitudinal gluon only changes
slightly at mid-momenta. Therefore, the dressing function
of the longitudinal gluon is dominated by its renormal-
ized mass also when changing the temperature. As ex-
pected, the hard-mode dressing functions become more
and more tree-level-like with increasing temperature. The
peaks in the hard-mode dressing functions shift to higher
momenta, owing to the renormalization condition, and be-
come smaller due to the increase of the effective mass p0
of the hard modes. At infinite temperature, they smoothly
merge into the corresponding 3-dimensional solutions. At
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Fig. 3. From top to bottom, the left panels show the dressing functions for the soft modes of the ghost and transverse gluon
and the propagator of the longitudinal gluon. The right panels display the hard-mode dressing functions n = 1 to n = 11.
Higher n correspond to lesser deviation from unity except for n = 1; see text. The solid lines are the κ = 1/2 solution and the
dashed lines the κ ≈ 0.4 solution. Both are taken at T = 1.5 GeV, ζ = ξ = 1, and N = 12. Note the different momentum scale
in the left and the right panels
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Fig. 5. The dependence of the solutions on T at N = 5 and ζ = ξ = 1. The left panel shows the soft modes, where apart from
the longitudinal gluon the dressing functions are shown. In the latter case the propagator is shown. The right panels show the
dressing functions for the n = 1 hard mode. Only the κ ≈ 0.4 solution is shown, the κ = 1/2 solution is similar and can be
found in [25]. Solid lines denote T = 0.9 GeV, dashed lines T = 1.5 GeV, and dotted lines T = 9.1 GeV
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low temperatures, the opposite effect is observed. In gen-
eral, the hard-mode dressing functions become more dy-
namical as their effective mass decreases, albeit quite
slowly. The insensitivity on the infrared solution of the
soft sector is not changed when reducing the tempera-
ture, and it may need a significantly lower temperature to
induce a change.

Employing ’t Hooft scaling, the lowest temperatures
that can be achieved with a numerically stable solution are
of the order of 750 MeV. Using a temperature-independent
renormalization scale and subtraction point [25] instead
results merely in a shift in the onset of non-perturbative
effects to larger momenta with some deformations, neces-
sary to obey the renormalization conditions. In this case,
it was also possible to cool down to T = 140 MeV, indi-
cating the possibility of super-cooling.

Varying the projection parameter ζ leads to similar
variations for the soft-mode dressing functions as in the
3-dimensional case [5]. The largest effect is seen in the
infrared. As the hard-mode dressing functions are insensi-
tive to the infrared behavior of the soft modes due to their
effective mass, there are only weak variations of them with
ζ. Only at small ζ an additional structure appears in the
transverse-gluon dressing function. This is likely due to
the cross-term in (9). The effect of varying ζ on the lon-
gitudinal sector is negligible, as in the 3-dimensional case.
Correspondingly, the effect of varying ξ is only significant
for the longitudinal sector. The sensitivity is much less
pronounced then in the case of varying ζ. Especially, the
soft longitudinal dressing function is nearly unaffected by
the variation of ξ. The reason is that the soft equation
does not depend explicitly on ξ, as it can be divided out
of the equation for ξ �= 0. Therefore, any ξ dependence
enters only indirectly by the weak dependence of the hard
modes on ξ. Only in the case of ξ ≈ 0 significant effects
are found, owing to the pathology of the ξ = 0 case. De-
tails of the dependence on ζ and ξ can be found in [25].
The dependence on the three-gluon vertex construction
is qualitatively not different from the infinite-temperature
limit for the soft modes, and negligible for the hard modes
[25].

At this point, a comparison to a different approach
to obtain the high-temperature gauge propagators can
be made. The usual continuum method is the semi-per-
turbative hard thermal loop (HTL) approach [33]. It is
based on resumming the hard-mode contributions in self-
energy diagrams. In the transverse infrared sector it is
plagued by severe problems, due to its perturbative na-
ture. The final result is a transverse-gluon propagator with
a particle-like pole at p = 0. Thus the gluon exponent
t would vanish. This is in sharp contrast to the results
found here and, as discussed in [5], such an infrared be-
havior is not very likely. Also the lattice results in the
infinite-temperature limit [9] and at temperatures some-
what above the critical [34] support the results found here.
On the other hand, concerning the soft longitudinal mode
and the hard modes, HTLs and the ansatz presented here
find qualitatively similar results on the level of the prop-
agators.

6.2 Thermodynamic potential

Concerning the contribution from the hard modes to the
thermodynamic potential, it is problematic to use the ap-
proach of Luttinger–Ward / Cornwall–Jackiw–Tomboulis
(LW/CJT) [35], as done previously [5,12]. In the present
truncation scheme the 2PI contributions in the LW/CJT-
action are neglected, and thus only the interaction part is
considered. This latter part vanishes identically for a free
system, i.e. for a system containing only tree-level dress-
ing functions. This free contribution has thus to be added
explicitly. Therefore, the hard-mode contribution, being
essentially tree level, can be calculated up to perturbative
corrections to be the same as that of a non-interacting
system of free gluons. The LW/CJT expression does not
capture the tree-level contribution of the soft modes, and
it thus can be added here. This yields a thermodynamic
potential of a gas of massless gluons with small correc-
tions due to the explicit soft-mode contributions and the
residual interactions of the hard modes. For Nc = 3 it is
given by [1]

lim
T→∞

Ω

T 4 = −16π2

90
. (20)

Using ’t Hooft scaling for the interaction strength, the
corrections due to the soft contributions obtained by the
LW/CJT action vanish most likely as 1/T [5,25]. The only
remaining contribution in the infinite-temperature limit is
hence the Stefan–Boltzmann contribution (20), in agree-
ment with results from lattice calculations [1]. Therefore,
the thermodynamic properties of the high-temperature
limit are governed by the hard modes. However, as the
calculation of the thermodynamic potential is problem-
atic in the current approach [5,25], this can only be taken
as an indication for such a behavior.

At temperatures of the order of the phase transition,
the contribution of the soft modes to the thermodynamic
potential is probably non-negligible. Furthermore, as dis-
cussed in [36], these contributions can be highly relevant
to the pressure p and lead to a non-vanishing value for
the trace of the stress-energy tensor, ε − 3p, where ε is
the energy density. The vanishing of the trace would be
expected for an ideal gas. Such an effect cannot be pro-
vided by perturbation theory [36], but has been observed
in lattice calculations [1].

6.3 Schwinger functions

As stated in Sect. 2, an unambiguous sufficient (although
not necessary) signal for the confinement of a particle is a
violation of positivity. This can be investigated using the
Schwinger function, defined as

∆(z) =
1
π

∫ ∞

0
dp0 cos(zp3)

F (p3)
p2
3

, (21)

where F is either Z or H. In the infinite-temperature limit
a clear signal for positivity violation has been found for
the transverse gluon [5], in agreement with lattice results
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Fig. 6. The Schwinger function for the gluon propagator. The left panels show the results for the soft modes and the right
panels for the hard modes with n = 1 and n = 2. The top panels give the results for the transverse propagator and the bottom
panels for the longitudinal propagator. The temperature is T = 1.5 GeV, ζ = ξ = 1, and N = 5. The result has been obtained
with roughly half a million Fourier frequencies [25]

[9,10,37]. However, for the longitudinal gluon no unam-
biguous signal could be found. It is therefore interesting
to repeat the study at lower temperatures. The results are
shown in Fig. 6.

The soft transverse function does show a clear sig-
nal of positivity violation. The hard modes do not show
a clear sign of oscillation within the available precision.
Compared to the high-temperature case, a much clearer
signal for positivity violation is found in the soft longitudi-
nal propagator. Furthermore, the longitudinal Schwinger

function is much more similar to the transverse one.
Therefore, the contributions from the hard modes seem
to be negative, shadowing the oscillations induced by the
soft modes in the infinite-temperature limit. It is also this
observation which restricts the reliability of the result.
Nonetheless, these results substantiate the non-triviality
also of the longitudinal sector and requires further atten-
tion. This is especially true for the soft longitudinal mode,
where it is yet unclear whether the positivity violation is
an artifact of the truncation and if not what is its origin.
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Known is so far that the extent of such violations depends
on the interaction strength [5,25]. In the case of the trans-
verse gluon, the violation is driven by the vanishing of the
propagator in the infrared, and thus a quite robust state-
ment.

7 Discussion

Before discussing further the implications of the results
found here on the structure of the Yang–Mills phase dia-
gram, it is worthwhile to take a step back to gather and
assess the findings. Especially, the reliability of the results
deserves special attention.

The reliability of the exploratory study of finite tem-
perature effects presented here and thus of the proper-
ties of the hard modes is a major concern. The success
of the truncation scheme in the infinite-temperature limit
is based on its exactness in the ultraviolet and its pre-
sumed exactness in the infrared. Thus the consequences
of the deficiencies at intermediate momenta are strongly
constrained. This constraint is lost by cutting off the Mat-
subara sums. As a consequence, the ultraviolet properties
of the hard modes are incorrect and a rooting in perturba-
tion theory is prevented. This amplifies the second prob-
lem. The hard modes do not reach into the 4-dimensional
infrared region due to their effective mass. Therefore the
advantages of the truncation scheme are lost to a large
extent and the equations for the hard modes become un-
reliable.

Nonetheless, the presented results are relevant. At
sufficiently large temperatures, the truncation-dependent
self-energies of the hard modes are suppressed by the large
effective mass and they are dominated by the truncation-
independent tree-level terms. Thus, the truncation arti-
facts vanish when the temperature goes to infinity. The
difficult part is then to assess down to which temperature
the results are still reliable, at least qualitatively.

As it is found that the system is only very weakly de-
pendent on temperature, qualitative conclusions can prob-
ably be drawn even at quite small temperatures. This is
due to the fact that the infrared properties of the soft
modes are nearly independent of the hard modes. In gen-
eral, the hard modes effectively decouple because of their
effective mass, which is large compared to ΛQCD, even at
the phase transition. The only exception is the genera-
tion of the screening mass for the soft longitudinal gluon,
which can be found on quite general grounds and thus
can be considered reliable. This is also supported by the
systematic error estimations performed in [5,25], which
do not find qualitative effects but only small quantitative
ones.

Although the quantitative results may be subject to
change, the qualitative result is expected to be quite re-
liable. Probably down to temperatures within the same
order of magnitude as the phase transition, the high-
temperature phase consists of strongly interacting soft
modes exhibiting confining properties and inert hard
modes. This is supported by lattice results, which find
that the infinite-temperature limit is effectively reached at

about 2Tc [9] and the qualitative features of the infinite-
temperature limit up to the highest temperatures, for
which propagators are available, of 6Tc [34]. This consti-
tutes the major result found in this work.

Concerning the thermodynamic potential, no final con-
clusion can be drawn. The results indicate that the gross
thermodynamic properties far away from the phase transi-
tion are completely dominated by the hard modes and that
a Stefan–Boltzmann behavior is reached in the infinite-
temperature limit. Considering the crude assumptions
made and the difficulties encountered, this result is indica-
tive at best. Nonetheless, if it can be substantiated, this
would allow one to understand how a Stefan–Boltzmann-
like behavior can emerge from a non-trivial theory. At
the same time, the results also indicate that, at low tem-
peratures, non-perturbative effects will play a role in the
thermodynamics and certainly will especially be relevant
in the vicinity of the phase transition.

8 Concluding remarks

Looking at the results found in [5,25] and the solutions
at zero [21] and small temperatures [12], a coherent pic-
ture emerges. Still, this picture is overshadowed by the
problems of truncation artifacts, especially at finite tem-
peratures.

The main difference between the low-temperature and
the high-temperature phase is not primarily one between
a strongly interacting and confining system and one
with only quasi-free particles. The chromoelectric gluons,
whose infrared behavior change from over-screening to
screening, come somewhat close to such a picture, and
the hard modes certainly do. The latter become free due
to the vacuum property of asymptotic freedom and the
dependence of their energy on the temperature, thus in
an expected although not entirely trivial manner. The
chromomagnetic gluons remain over-screened in the in-
frared and are thus confined. In the sector transverse
to the heat-bath, the results provide strong evidence for
the Zwanziger–Gribov and/or the Kugo–Ojima scenarios,
even at very high temperatures.

Including the observation of super-heating in the low-
temperature regime [12] and super-cooling at high tem-
peratures, the scenario emerging is a chromoelectric phase
transition of first order. This phase transition connects two
different strongly interacting phases of Yang–Mills theory.
Especially quantum fluctuations always dominate thermal
fluctuations and at least part of the gluon spectrum is al-
ways confined.

In the vicinity of the phase transition, the conse-
quences of non-perturbative effects are likely also relevant
to thermodynamic properties, especially to the pressure
and the trace anomaly [36]. This underlines the impor-
tance of non-perturbative effects at least for the temper-
ature range relevant to experiment.

In summary, evidence is found that, in the high-
temperature phase of Yang–Mills theory, the elementary
excitations exhibit quite non-trivial correlations. The soft
interactions are non-trivial at all temperatures, and the
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decoupling of the hard modes is evident. This establishes
the main features of the high-temperature phase of Yang–
Mills theories in Landau gauge. The results found here
comply with Gribov–Zwanziger- or Kugo–Ojima-type con-
finement mechanisms for the dimensionally reduced the-
ory. Therefore, the high-temperature phase is definitely
non-perturbative. It will be interesting to investigate the
consequences for quarks and their correlations at high
temperature on the one hand and for cosmology and the
early universe on the other.
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Appendix A:
Running coupling

For fixing the coupling there are two options to consider.
If µ is fixed, g3 = g2T grows without limit as T grows.

This does not necessarily pose a problem, as the infinite-
temperature propagators are independent of g3 as long
as they are expressed as a function of p/g2

3 [5]. Under
such circumstances, all momenta below T are effectively
infrared, and the non-perturbative regime would extend
to all momenta. Here this possibility will not be pursued
any further10.

Alternatively, it is possible to use the limiting prescrip-
tion g2(µ(T ))T = c∞, where c∞ is an arbitrary constant,
effectively performing a renormalization group transfor-
mation when changing the temperature. This fixes g2

3 to
be proportional to ΛQCD, the dynamical scale of QCD
[31], while the 4-dimensional coupling vanishes like 1/T .
This defines a ’t Hooft-like scaling in T . Note that g → 0
for T → ∞ corresponds to the conventional arguments of
a vanishing coupling in the high-temperature phase [33].
However, as in the large-Nc limit, a ’t Hooft scaling is per-
formed, generating a well-defined theory. Hence, this pos-
sibility defines a smooth 3-dimensional limit with a finite
3-dimensional coupling constant. Here c∞ = 1 is chosen.

Furthermore, it would be useful to give explicit units
for the temperature scale. In the vacuum, the scale is fixed
via a comparison of the running coupling to perturbation
theory [23]. This is not possible here because the Matsub-
ara sum is truncated, and the coupling cannot be calcu-
lated reliably for momenta of the order of 2πNT .

The simplest procedure is to compare g3 to lattice cal-
culations. There, the effective 3-dimensional coupling is
found to be g2

3(2Tc) /2Tc = 2.83 [9]. The phase transition
temperature is Tc = 269 ± 1 MeV [1]. Albeit this will not
be exactly g2 ·2Tc due to the truncation, a first approxima-
tion is to require the same temperature scale at 2Tc. Using
the fixed g2T = c∞ prescription, then 1 = c∞/(2Tc ·2.83).

10 See [25] for a thorough discussion of this case

Since here c∞ = 1 in internal units, internal units have
to be multiplied by 1.5 GeV to yield physical units. This
temperature scale is used in Sect. 6. The ratios of temper-
atures are independent of this prescription.

Appendix B:
Subtraction of spurious divergences

The spurious divergences in contributions of hard modes
due to the integration are dealt with in exactly the same
way as in three dimensions [5] by adjusting the tadpole
terms. Each integration kernel K in the longitudinal equa-
tion is split as

K = K0 + KD, (B.1)

where K0 is finite and KD divergent upon integration.
Each kernel KD will be compensated by the corresponding
tadpole in (8).

A new kind of spurious divergences appear when per-
forming the Matsubara sum. When including more and
more Matsubara frequencies, it is found that their contri-
bution in the gluon equations (8) and (9) at |p| < max(q0)
scales as q0, thus behaving as a quadratic divergence. This
is an artifact of using a finite number of Matsubara fre-
quencies and does not vanish as long as the number of fre-
quencies is finite, no matter how large the number. This
behavior is spurious and must be removed.

This can be performed by the replacement

F (q, q0)F (p + q, q0 + p0) (B.2)

→
(

F (q, q0) − 1
Z3

) (
F (q + p, q0 + p0) − 1

Z3

)
,

in all affected loops in the gluon equations. F is a generic
dressing function and Z3 its wavefunction renormaliza-
tion.

In the transverse equations all spurious divergences, in-
cluding the one of the Matsubara sum, are again removed
at ζ = 3. Therefore, the replacement (B.2) will only be
necessary in those contributions which are proportional
to (ζ − 3). Hence the integral kernels are split differently
than in (B.1) as

K(ζ) = K0 + (ζ − 3)K3 + KD(ζ). (B.3)

Here K0 and K3 are finite and independent of ζ, and KD
contains all divergences upon integration. The correspond-
ing subtraction is then performed by the replacement

KF (q)F (p + q) → K0F (q)F (p + q) (B.4)

+ (ζ − 3)K3

(
F (q) − 1

Z3

) (
F (p + q) − 1

Z3

)
.

In the soft transverse equation it is necessary in addi-
tion to remove tadpole-like structures at ζ �= 3 in K3 [25],
which alters (B.4) to
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KF (q)F (p + q) → K0F (q)F (p + q)

+ (ζ − 3)
(

K3 − 1
p2

(
lim
p→0

p2K3

))

×
(

F (q) − 1
Z3

) (
F (p + q) − 1

Z3

)
.
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